Add like
Add dislike
Add to saved papers

Cerebral Blood Flow Based Computer Modeling of G z -Induced Effects.

BACKGROUND: There is continued interest in acceleration (G) effects in civil aviation, as G-induced loss of consciousness (G-LOC), impaired consciousness, and visual effects play a role in aerobatic, agricultural, and military aviation accidents. METHODS: A software model [the Civil Aerospace Medical Institute G-Effects Model (CGEM)] based on physical and physiological variables related to in-flight tissue resupply and using oxygen flow as a proxy for supply availability, was developed to evaluate risk of G-LOC and related phenomena in aeronauts. Aeronauts were modeled using several parameters, including sex, cardiovascular fitness, and other common modifiers such as G-suits, positive pressure breathing gear, anti-G straining, and other muscle tensing. The software was validated by comparison with experimental data from the peer-reviewed literature. RESULTS: CGEM predicted physiological effects of Gz exposure accurately, particularly for rapid onset rates. Predicted times to G-LOC and absolute incapacitation periods were consistently within 1 SD of pooled results obtained during centrifuge experiments using U.S. Navy (USN) and U.S. Air Force (USAF) pilots. Predictions of G tolerance based on visual effects onset also compared well with published data, as did evaluation of symptoms expected during a difficult aerobatic maneuver. DISCUSSION: CGEM is a new tool for civil and military aviation. Rather than providing a simple G tolerance number, flight surgeons, pilots, and accident investigators can gain insight into changes in risk-from factors such fatigue, medications, dehydration, and anti-G countermeasures used-through proper selection of parameters. Copeland K, Whinnery JE. Cerebral blood flow based computer modeling of Gz -induced effects . Aerosp Med Hum Perform. 2023; 94(5):409-414.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app