Add like
Add dislike
Add to saved papers

Outstanding photocatalytic nitrogen fixation performance of TiO 2 QDs modified by Bi 2 O 3 /NaBiS 2 nanostructures upon simulated sunlight.

Nowadays, a promising material for NH3 production under mild and safe conditions using heterogeneous photocatalysts is very important. In this regard, Bi2 O3 and NaBiS2 nanoparticles were combined with TiO2 quantum dots (QDs) through a facile hydrothermal process. The TiO2 QDs/Bi2 O3 /NaBiS2 nanocomposites displayed excellent performance in the photofixation of nitrogen upon simulated sunlight. The NH3 generation rate constant over the optimum nanocomposite was 10.2 and 3.3-folds higher than TiO2 (P25) and TiO2 QDs photocatalysts, respectively. The spectroscopic and electrochemical studies affirmed more effective segregation and transfer of photo-induced charge carriers within ternary nanocomposite, due to the developing tandem n-n-p heterojunctions, which led to more lifetime of charges. Moreover, the impacts of solvent, pH, electron scavenger, and lake of nitrogen molecules on the NH3 generation were investigated. Finally, it was concluded that the TiO2 QDs/Bi2 O3 /NaBiS2 nanocomposite, with appealing features of more activity, high stability, and a facile one-pot synthesis method, is a promising photocatalyst in nitrogen fixation technology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app