Journal Article
Review
Add like
Add dislike
Add to saved papers

Metal-Organic Framework-Based Composites for the Detection and Monitoring of Pharmaceutical Compounds in Biological and Environmental Matrices.

The production of synthetic drugs is considered a huge milestone in the healthcare sector, transforming the overall health, aging, and lifestyle of the general population. Due to the surge in production and consumption, pharmaceutical drugs have emerged as potential environmental pollutants that are toxic with low biodegradability. Traditional chromatographic techniques in practice are time-consuming and expensive, despite good precision. Alternatively, electroanalytical techniques are recently identified to be selective, rapid, sensitive, and easier for drug detection. Metal-organic frameworks (MOFs) are known for their intrinsic porous nature, high surface area, and diversity in structural design that provides credible drug-sensing capacities. Long-term reusability and maintaining chemo-structural integrity are major challenges that are countered by ligand-metal combinations, optimization of synthetic conditions, functionalization, and direct MOFs growth over the electrode surface. Moreover, chemical instability and lower conductivities limited the mass commercialization of MOF-based materials in the fields of biosensing, imaging, drug release, therapeutics, and clinical diagnostics. This review is dedicated to analyzing the various combinations of MOFs used for electrochemical detection of pharmaceutical drugs, comprising antibiotics, analgesics, anticancer, antituberculosis, and veterinary drugs. Furthermore, the relationship between the composition, morphology and structural properties of MOFs with their detection capabilities for each drug species is elucidated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app