Add like
Add dislike
Add to saved papers

Structure of networks that evolve under a combination of growth and contraction.

Physical Review. E 2022 October
We present analytical results for the emerging structure of networks that evolve via a combination of growth (by node addition and random attachment) and contraction (by random node deletion). To this end we consider a network model in which at each time step a node addition and random attachment step takes place with probability P_{add} and a random node deletion step takes place with probability P_{del}=1-P_{add}. The balance between the growth and contraction processes is captured by the parameter η=P_{add}-P_{del}. The case of pure network growth is described by η=1. In the case that 0<η<1, the rate of node addition exceeds the rate of node deletion and the overall process is of network growth. In the opposite case, where -1<η<0, the overall process is of network contraction, while in the special case of η=0 the expected size of the network remains fixed, apart from fluctuations. Using the master equation and the generating function formalism, we obtain a closed-form expression for the time-dependent degree distribution P_{t}(k). The degree distribution P_{t}(k) includes a term that depends on the initial degree distribution P_{0}(k), which decays as time evolves, and an asymptotic distribution P_{st}(k) which is independent of the initial condition. In the case of pure network growth (η=1), the asymptotic distribution P_{st}(k) follows an exponential distribution, while for -1<η<1 it consists of a sum of Poisson-like terms and exhibits a Poisson-like tail. In the case of overall network growth (0<η<1) the degree distribution P_{t}(k) eventually converges to P_{st}(k). In the case of overall network contraction (-1<η<0) we identify two different regimes. For -1/3<η<0 the degree distribution P_{t}(k) quickly converges towards P_{st}(k). In contrast, for -1<η<-1/3 the convergence of P_{t}(k) is initially very slow and it gets closer to P_{st}(k) only shortly before the network vanishes. Thus, the model exhibits three phase transitions: a structural transition between two functional forms of P_{st}(k) at η=1, a transition between an overall growth and overall contraction at η=0, and a dynamical transition between fast and slow convergence towards P_{st}(k) at η=-1/3. The analytical results are found to be in very good agreement with the results obtained from computer simulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app