Add like
Add dislike
Add to saved papers

Mesoporous Calcium-Silicate Nanoparticles Loaded with Prussian Blue Promotes Enterococcus Faecalis Ferroptosis-Like Death by Regulating Bacterial Redox Pathway ROS/GSH.

Background: Mesoporous calcium-silicate nanoparticles (MCSNs) are advanced biomaterials that have been used to control drug delivery for many years. Ultrasmall Prussian blue nanoparticles (UPBNPs) showed high peroxidase and catalase-like activities. This study evaluated the antibacterial and antibiofilm properties, mechanism and cytotoxicity of UPBNPs-MCSNs composites synthesized by both as precursors.

Methods: UPBNPs-MCSNs were prepared and characterized. The antibacterial effect of UPBNPs-MCSNs was evaluated by the MTT assay and CFU counting method, and their biosafety was tested by CCK8. Then explore the antibacterial mechanism, including TEM observation of bacterial morphology, and detection of bacterial ROS, LPO and GSH levels. The antibiofilm activity of UPBNPs-MCSNs was tested by E. faecalis biofilm model in human roots. The roots were pretreated with materials and cultured with E. faecalis , and the survival of E. faecalis on the root canal wall was observed by SEM and CLSM.

Results: The results showed that UPBNPs-MCSNs had potent antibacterial and antibiofilm activities. They can aggregate on the dentin surface and significantly inhibit E. faecalis adhesion and colonization. Their antibacterial activity is as effective as NaClO and calcium hydroxide (CH), can significantly prolong the time of bacterial colonization than CH, but have lower cytotoxicity to normal cells. We found that UPBNPs-MCSNs trigger a like classic ferroptosis pathway in bacteria. UPBNPs-MCSNs can induce bacteria to produce ROS and LPO, and reduce GSH level. Moreover, we observed that the metal ions chelator and the antioxidant could block their antibacterial activity.

Conclusion: These results reveal that UPBNPS-MCSNs have high antibacterial and antibiofilm, and can mediate the bacterial redox pathway ROS/GSH like the classical pathway of ferroptosis, providing a theoretical basis for them to develop into a safe and effective novel root canal disinfectant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app