Add like
Add dislike
Add to saved papers

High-Resolution Cryo-Electron Microscopy Reveals the Unique Striated Hollow Structure of Photocatalytic Macrocyclic Polydiacetylene Nanotubes.

High-resolution structures are crucial for understanding the functional properties of nanomaterials. We applied single-particle cryo-electron microscopy (cryo-EM), a method traditionally used for structure determination of biological macromolecules, to obtain high-resolution structures of synthetic non-biological filaments formed by photopolymerization of macrocyclic diacetylene (MDA) amphiphilic monomers. Tomographic analysis showed that the MDA monomers self-assemble into hollow nanotubes upon dispersion in water. Single-particle analysis revealed tubes consisting of six pairs of covalently bonded filaments held together by hydrophobic interactions, where each filament is composed of macrocyclic rings stacked in parallel "chair" conformations. The hollow MDA nanotube structures we found may account for the efficient scavenging of amphiphilic pollutants in water and subsequent photodegradation of the guest species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app