Add like
Add dislike
Add to saved papers

Impact of coronary plaque morphology on the precision of computational fractional flow reserve derived from optical coherence tomography imaging.

BACKGROUND: Computational fractional flow reserve (FFR) was recently developed to expand the use of physiology-guided percutaneous coronary intervention (PCI). Nevertheless, current methods do not account for plaque composition. It remains unknown whether the numerical precision of computational FFR is impacted by the plaque composition in the interrogated vessels.

METHODS: This study is an observational, retrospective, cross-sectional study. Patients who underwent both optical coherence tomography (OCT) and FFR prior to intervention between August 2011 and October 2018 at Wakayama Medical University Hospital were included. All frames from OCT pullbacks were analyzed using a deep learning algorithm to obtain coronary plaque morphology including thin-cap fibroatheroma (TCFA), lipidic plaque volume (LPV), fibrous plaque volume (FPV), and calcific plaque volume (CPV). The interrogated vessels were stratified into three subgroups: the overestimation group with the numerical difference between the optical flow ratio (OFR) and FFR >0.05, the reference group with the difference ≥-0.05 and ≤0.05, and the underestimation group with the difference <-0.05.

RESULTS: In total 230 vessels with intermediate coronary artery stenosis from 193 patients were analyzed. The mean FFR was 0.82±0.10. Among them, 21, 179, and 30 vessels were in the overestimation, the reference, and the underestimation group, respectively. TCFA was higher in the underestimation group (60%) compared with reference (36.3%) and overestimation group (19%). Besides, it was not associated with numerical difference between OFR and FFR (NDOF) after multilevel linear regression. LPV was associated with NDOF as OFR underestimated FFR with -0.028 [95% confidence interval (CI): -0.047, -0.009] for every 100 mm3 increase in LPV.

CONCLUSIONS: High lipid burden underestimates FFR when OFR is used to assess the hemodynamic importance of intermediate coronary artery stenosis. TCFA, FPV, and CPV were not independent predictors of NDOF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app