Add like
Add dislike
Add to saved papers

ACTL6A promotes the growth in non-small cell lung cancer by regulating Hippo/Yap pathway.

Purpose: To delve into the related molecular mechanism of ACTL6A on non-small cell lung cancer (NSCLC) cell growth and apoptosis. Methods: Quantitative real-time polymerase chain reaction, immunohistochemical staining, and western blot assays were employed to examine ACTL6A mRNA and protein expression in four NSCLC cell line (NCI-H2170, LTEP-s, NCI-H1703, and PC-9) and normal lung cell line (BEAS-2B). CCK-8 cell viability assays and clone formation assay were applied to verify the cell proliferation of NCI-H2170 cell line after knockdown of ACTL6A. Flow cytometry assays were applied to check the role of ACTL6A in the apoptosis of NSCLC cells. The western blot assays were employed to examine the protein expression of WWC1, YAP, TAZ, and CYR61 in NCI-H2170 after knockdown of ACTL6A. Finally, xenograft tumor was taken out and checked the tumor volumes and weight. Immunohistochemical staining and western blot assays were employed to examine cell proliferation and apoptosis of NSCLC in vivo . Results: In this study, the results showed that the mRNA and protein expression level of ACTL6A was higher in four NSCLC cell line than normal lung cell line, respectively. Suppression of ACTL6A inhibited the growth and promoted apoptosis of NSCLC cells. Meanwhile, ACTL6A promotes tumor growth and inhibits apoptosis of NSCLC in vivo via Hippo/YAP signaling pathway. Conclusion: ACTL6A promotes the proliferation in NSCLC by regulating Hippo/YAP pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app