Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Coordinately increased lysozymuria and lysosomal enzymuria induced by maleic acid.

Kidney International 1986 December
During the acute renal tubular dysfunction of Fanconi syndrome and type 2 renal tubular acidosis (FS/RTA2) induced by maleic acid in the unanesthetized dog, we observed: 30 minutes after the onset of FS/RTA2, the urinary excretion of lysosomal enzymes, N-acetyl-beta-glucosaminidase (NAG), beta-glucuronidase (beta-gluc) and beta-galactosidase (beta-galac), increased simultaneously with the anticipated increase in renal clearance of lysozyme; the severities of all these hyperenzymurias increased rapidly, progressively, and in parallel, all reaching a peak some 60 to 80 minutes after their onset; thereafter, while the FS/RTA2 continued undiminished in severity, the severity of the hyperenzymurias decreased rapidly, greatly, progressively, and in parallel; and sodium phosphate loading strikingly attenuated the FS/RTA2 and the hyperenzymurias. Thus, the maleic acid-induced FS/RTA2 is attended by an acute reversible-complex derangement in the renal tubular processing of proteins that: affects not only lysozyme which is normally filtered, but also NAG and other lysosomal enzymes, which are not; and is to some extent functionally separable from that of FS/RTA2. The findings suggest that the derangements in renal processing of lysozyme and lysosomal enzymes are linked, and that a phosphate-dependent metabolic abnormality in the proximal tubule can participate in the pathogenesis of both these derangements and the FS/RTA2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app