Add like
Add dislike
Add to saved papers

Reverse metabolic engineering in lager yeast: impact of the NADH/NAD + ratio on acetaldehyde production during the brewing process.

Acetaldehyde is synthesized by yeast during the main fermentation period of beer production, which causes an unpleasant off-flavor. Therefore, there has been extensive effort toward reducing acetaldehyde to obtain a beer product with better flavor and anti-staling ability. In this study, we discovered that acetaldehyde production in beer brewing is closely related with the intracellular NADH equivalent regulated by the citric acid cycle. However, there was no significant relationship between acetaldehyde production and amino acid metabolism. A reverse engineering strategy to increase the intracellular NADH/NAD+ ratio reduced the final acetaldehyde production level, and vice versa. This work offers new insight into acetaldehyde metabolism and further provides efficient strategies for reducing acetaldehyde production by the regulating the intracellular NADH/NAD+ ratio through cofactor engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app