Add like
Add dislike
Add to saved papers

Dicyanoisophorone-Based Near-Infrared Emission Fluorescent Probe for Detecting NAD(P)H in Living Cells and in Vivo.

Analytical Chemistry 2018 December 12
NADH and NADPH are ubiquitous coenzymes in all living cells and play vital roles in numerous redox reactions in cellular energy metabolism. To accurately detect the distribution and dynamic changes of NAD(P)H under physi-ological condition is essential for understanding its biological functions and pathological roles. In this work, we developed a near-infrared (NIR) emission fluorescent small-molecule probe (DCI-MQ) composed of a dicyanoisophorone chromophore conjugated with a quinolinium moiety for in vivo NAD(P)H detection. DCI-MQ owns the advantages of high water solubility, rapid response, extraordinary selectivity, great sensitivity (detection limit of 12 nM), low cytotoxicity and a NIR emission (660 nm) in response to NAD(P)H. Moreover, the probe DCI-MQ was successfully applied for the detection and imaging of endogenous NAD(P)H in both living cells and tumor-bearing mice, which provides an effective tool for the study of NAD(P)H-related physiological and pathological processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app