Add like
Add dislike
Add to saved papers

Two strongly linked single nucleotide polymorphisms (Q320P and V397I) in GDF9 gene are associated with litter size in cashmere goats.

Theriogenology 2018 October 20
Growth differentiation factor 9 (GDF9) gene is an effective intra-ovarian regulator; it plays a crucial role in early folliculogenesis in female mammals. The non synonymous mutations: g.3905A > C (also known as p.Gln320Pro/Q320P) and g.4135G > A (also know as p.Val397Ile/V397I), are two well-known and controversial single nucleotide polymorphisms (SNPs) within GDF9 gene in goats with different prolificacy, and so far, there were no studies on linkage between Q320P and V397I. Therefore, the aim of this work was to study whether Q320P and V397I mutations have a significant effect on litter size, in Shaanbei white cashmere goats (SBWC, n = 1511), and to explore the specific relationship between these two SNPs. The results showed that both of Q320P and V397I mutations exhibited three genotypes; the minor allele frequencies (MAF) of the SNPs were 0.286 and 0.477, respectively; and these two SNPs were in strong linkage disequilibrium (D' = 0.976, r2  = 0.348) in the studied goats. Moreover, association analyses revealed that Q320P was significantly associated with the first-born litter size in goats irrespective of the sample size (n = 1511; P = 0.008), while V397I significantly affected litter size until the sample size crossed 1300 (P = 0.015). Meanwhile, the diplotypes PP-II and QP-VI were observed to have a superior effect on litter size (P = 3.78 × 10-5 ) to that of the haplotypes (P = 1.12 × 10-7 ). Thus, the findings led us to assume that Q320P mutation was the major SNP affecting goat litter size. These findings can provide useful DNA markers for selecting superior individuals in marker-assisted selection (MAS) for breeding in relation to fecundity in goats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app