Add like
Add dislike
Add to saved papers

Thiamethoxam inhibits blastocyst expansion and hatching via reactive-oxygen species-induced G2 checkpoint activation in pigs.

Cellular Signalling 2018 August 25
Thiamethoxam (TMX) is a neonicotinoid insecticide. It has specific high toxicity to insects. Residues of TMX have been detected in various crops. Early embryo quality is vital for fertility. Excessive production of reactive oxygen species (ROS) can override embryonic antioxidant defenses, producing oxidative stress that triggers apoptosis, necrosis, and/or permanent DNA damage responses in the early embryo. Comparative studies have indicated that TMX hepatotoxicity is significant in mammals in acute tests, but little is known about accumulated chronic toxicity in early embryonic development. Porcine embryos were obtained here by the parthenogenetic activation of meiosis II oocytes and cultured in the PZM-5 medium with or without TMX. These embryos were evaluated by various methods. The expansion and hatching of blastocysts treated with TMX decreased by 21.73% and 16.71%, respectively, as compared with controls. In an analysis of 5-bromo-2-deoxyuridine (BrdU) incorporation, the rate of cell proliferation was 44.33% lower as compared with expanded blastocysts of the control group. ROS and γH2AX levels were higher in the TMX group than in the control group. Real-time reverse-transcription polymerase chain reaction showed that Sod1 expression increased and the expression of Mnsod, Gpx1, Igta5, and Cox2 decreased. A CDK1 kinase assay revealed that maturation-promoting factor (MPF) activity diminished by 31.41% in expanding blastocysts. In conclusion, these results suggest that TMX inhibits blastocyst expansion and hatching by ROS-induced DNA damage checkpoint activation, which inhibits the activation of MPF and cell cycle progression in porcine blastocysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app