Add like
Add dislike
Add to saved papers

Tailoring Collagen to Engineer the Cellular Microenvironment.

Biotechnology Journal 2018 August 26
Collagen is the most abundant protein in the extracellular matrix (ECM), and it can direct the behavior of the neighboring cells. By customizing properties of collagen, it is possible to control the cells that interact with it. Utilizing a bottom-up strategy, modular gene fragments are assembled and recombinantly processed to create collagen-mimetic variants that modulate proteolytic degradation, cell adhesion, and mechanical characteristics. The removal of the native MMP cleavage site results in MMP-1 resistant collagen. By introducing additional MMP-susceptible sequences, the degradation characteristics of collagen molecules are modified. Additional non-native functionality is also introduced into the collagen, including the IKVAV sequence, which has been implicated in neurite outgrowth. This mutation, which disrupts the Gly-X-Y tripeptide repeat of collagen, does not prevent the formation of triple-helical collagen. Non-native cysteines and the integrin binding sequence GFOGER are combined in the collagen, and encapsulation of normal human lung fibroblasts within collagen hydrogels are tested. Cells remain spherical, when encapsulated within hydrogels of collagen variants in which the native integrin binding sites are removed, but cell adhesion is restored with the introduction of non-native GFOGER binding sequences. This modular collagen system allows for the combination of multiple functionalities, and it enables the production of biomimetic scaffolds with customizable characteristics to modulate cellular microenvironments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app