Add like
Add dislike
Add to saved papers

Interaction of flexural-gravity waves in ice cover with vertical walls.

Diffraction of flexural-gravity waves in an ice cover by a bottom mounted structure with vertical walls is studied. The problem is solved by using the so-called vertical modes corresponding to the roots of the dispersion relation for flexural-gravity waves. These modes reduce the original three-dimensional problem to a set of two-dimensional diffraction problems with non-homogeneous boundary conditions on the rigid walls. Two unknown functions presenting in the boundary conditions for each mode are determined using the conditions at the contact line between the ice cover and the vertical walls. The clamped conditions at the contact line, where the ice cover is frozen to the wall, are considered in this study. The solution of the problem is obtained for a single vertical circular cylinder frozen in the ice cover. A general approach to the problem for vertical cylinders of any shapes is presented. The diffraction problems with vertical walls extended to infinity are discussed.This article is part of the theme issue 'Modelling of sea-ice phenomena'.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app