Add like
Add dislike
Add to saved papers

Dynamic changes in chromatin and microtubules at the first cell cycle in SCNT or IVF goat embryos.

We investigated the dynamic changes in chromatin and microtubules at the first cell cycle in goat somatic cell nuclear transfer (SCNT)-derived and in vitro fertilization (IVF)-derived embryos. Stage-dependent and characteristic changes to chromatin and microtubules occurred in SCNT-derived embryos at different times after activation. About half donor nuclei underwent premature chromosome condensation (PCC) at 1 h post activation, and furtherly reached telophase at 2 h after activation. However, we discovered that the separated chromosomes reaggregated, not keeping two independent nuclei; and formed one pronucleus at 2.5 h after activation. One pronucleus was found in all reconstructed oocytes except other no nucleus oocytes from 3 to 22 h after activation. Reconstructed oocytes reached the first mitotic metaphase at 23 h post activation, which was later than that of IVF-derived embryos at 16 h after insemination. SCNT-derived embryos showed significantly higher abnormalities in the first mitotic metaphase spindle, compared with IVF-derived embryos. Abnormal spindles included multi polar and half spindles. SCNT-derived embryos began to cleave at 24 h after activation, which was later than that of IVF-derived embryos at 21 h after insemination. SCNT-derived embryos showed delayed conversion from telophase to interphase than IVF-derived embryos during cleavage. These might lead to poor development in SCNT-derived embryos.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app