Add like
Add dislike
Add to saved papers

Pyridine nucleotides regulate the superoxide anion flash upon permeabilization of mitochondrial membranes: An MCLA-based study.

The permeabilization of mitochondrial membranes via permeability transition pore opening or by the pore-forming peptide alamethicin causes a flash of superoxide anion (SA) and hydrogen peroxide production and the inhibition of matrix aconitase. It was shown using the SA probe 3,7-dihydro-2-methyl-6-(4-methoxyphenyl)imidazol[1,2-a]pyrazine-3-one (MCLA) that the substrates of NAD-dependent dehydrogenases, inhibitors of the respiratory chain, and NAD(P)H at millimolar concentrations suppressed or delayed SA flashes. In the presence of added NADH and NADPH, SA flashes were observed only after considerable oxidation of pyridine nucleotides. The production of SA was maximal at NADPH and NADH redox potentials from -315 to -295 mV and from -325 to -270 mV, respectively, depending on NAD(P)H concentration. SA generation supported by NADPH was severalfold greater than that supported by NADH. In intact mitochondria, NADPH- and NADH-dependent SA generation was negligible. Respiratory substrates at physiological or lower concentrations were incapable of suppressing the NADPH-supported SA flash. These data indicate that, in conditions close to pathophysiological, matrix NADPH oxidoreductase(s), presumably, an adrenodoxin reductase in complex with adrenodoxin, can essentially contribute to SA flashes associated with transient or irreversible permeability transition pore opening or membrane permeabilization by another mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app