Add like
Add dislike
Add to saved papers

Production of extracellular heterologous proteins in Streptomyces rimosus, producer of the antibiotic oxytetracycline.

Among the Streptomyces species, Streptomyces lividans has often been used for the production of heterologous proteins as it can secrete target proteins directly into the culture medium. Streptomyces rimosus, on the other hand, has for long been used at an industrial scale for oxytetracycline production, and it holds 'Generally Recognised As Safe' status. There are a number of properties of S. rimosus that make this industrial strain an attractive candidate as a host for heterologous protein production, including (1) rapid growth rate; (2) growth as short fragments, as for Escherichia coli; (3) high efficiency of transformation by electroporation; and (4) secretion of proteins into the culture medium. In this study, we specifically focused our efforts on an exploration of the use of the Sec secretory pathway to export heterologous proteins in a S. rimosus host. We aimed to develop a genetic tool kit for S. rimosus and to evaluate the extracellular production of target heterologous proteins of this industrial host. This study demonstrates that S. rimosus can produce the industrially important enzyme phytase AppA extracellularly, and analogous to E. coli as a host, application of His-Tag/Ni-affinity chromatography provides a simple and rapid approach to purify active phytase AppA in S. rimosus. We thus demonstrate that S. rimosus can be used as a potential alternative protein expression system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app