Add like
Add dislike
Add to saved papers

Contrast-enhanced computerized tomography combined with a targeted nanoparticle contrast agent for screening for early-phase non-small cell lung cancer.

Non-small cell lung cancer (NSCLC) is a major cause of morbidity and mortality, and patients with NSCLC are frequently diagnosed at an advanced stage. This is primarily due to a lack of advanced and sensitive protocols for the detection of early stage NSCLC. Therefore, methods for the accurate diagnosis of early stage NSCLC are urgently required to improve survival rates. The present study investigated the use of contrast-enhanced computerized tomography (CECT) combined with a targeted nanoparticle contrast agent (TNCA) to diagnose early-stage NSCLC in a mice xenograft model. The TNCA used was lenvatinib, a multi-target tyrosine kinase inhibitor that inhibits vascular endothelial growth factor receptor 1-3, fibroblast growth factor receptor 1-4, platelet-derived growth factor receptor β, proto-oncogene tyrosine-protein kinase receptor Ret and mast/stem cell growth factor receptor Kit. Xenograft NSCLC mice were established and used to analyze the efficacy of CECT-TNCA compared with CT scanning alone. The TNCA was inhaled with the use of an atomizer. The results demonstrated that CECT-TNCA improved the sensitivity of the diagnosis of early stage NSCLC. In addition, imaging using the TNCA enabled the visualization of nodules in the lung in mice with early stage NSCLC. In addition, lung nodule signal enhancement was increased in CECT-TNCA compared with CT, suggesting a high accurate accumulation of the TNCA in tumor nodules. Mice diagnosed with early stage NSCLC exhibited a higher eradication rate of NSCLC after treatment with cisplatin compared with mice with advanced stage NSCLC. These data indicate that the sensitivity and accuracy of CT imaging for the diagnosis of early stage NSCLC was improved through combination with the liposome-encapsulated TNCA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app