Add like
Add dislike
Add to saved papers

Single microbial fuel cell reactor for coking wastewater treatment: Simultaneous carbon and nitrogen removal with zero alkaline consumption.

The use of several individual reactors for sequential removal of organic compounds and nitrogen, in addition to the required alkaline addition in aerobic reactors, remain outstanding technical challenges to the traditional biological treatment of coking wastewater. Here, we report the utilization of a single microbial fuel cell (MFC) reactor that performs simultaneous carbon and nitrogen removal with zero alkaline consumption, as evidenced by the results of the batch-fed and continuous-flow experiments. The MFC exhibited faster reaction kinetics for COD and total nitrogen (TN) removal than the same configured reactor analogous to the traditional aerobic biological reactor (ABR). At a hydraulic retention time (HRT) of 125 h, the efficiencies of COD and TN removal in the MFC reached 83.8±3.6% and 97.9±2.1%, respectively, much higher than the values of 73.8±2.9% and 50.2±5.0% obtained in the ABR. Furthermore, the degradation in the MFC of the main organic components, including phenolic compounds (such as phenol, 2-methylphenol, 3-methylphenol, 4-methylphenol, and 2,4-dimethlyphenol) and nitrogenous heterocyclic compounds (such as quinolone, pyridine, indole, and isoquinolone) was greater than that in the ABR. The enhancing effect was attributed to the ability of the MFC to self-adjust the pH. It was also manifested by the increased abundances of heterotrophs, nitrifiers, and denitrifiers in the MFC. The correlations between the current density and the rates of COD and TN removal suggest that the extent of the current from the anode to the cathode is a critical parameter for the overall performance of MFCs in the treatment of coking wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app