Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Amplified endogenous plasmin activity resolves acute thrombotic thrombocytopenic purpura in mice.

Essentials Plasmin is able to proteolyse von Willebrand factor. It was unclear if plasmin influences acute thrombotic thrombocytopenic purpura (TTP). Plasmin levels are increased during acute TTP though suppressed via plasmin(ogen) inhibitors. Allowing amplified endogenous plasmin activity in mice results in resolution of TTP signs.

SUMMARY: Background Thrombotic thrombocytopenic purpura (TTP) is an acute life-threatening pathology, caused by occlusive von Willebrand factor (VWF)-rich microthrombi that accumulate in the absence of ADAMTS-13. We previously demonstrated that plasmin can cleave VWF and that plasmin is generated in patients during acute TTP. However, the exact role of plasmin in TTP remains unclear. Objectives Investigate if endogenous plasmin-mediated proteolysis of VWF can influence acute TTP episodes. Results In mice with an acquired ADAMTS-13 deficiency, plasmin is generated during TTP as reflected by increased plasmin-α2-antiplasmin (PAP)-complex levels. However, mice still developed TTP, suggesting that this increase is not sufficient to control the pathology. As mice with TTP also had increased plasminogen activator inhibitor 1 (PAI-1) levels, we investigated whether blocking the plasmin(ogen) inhibitors would result in the generation of sufficient plasmin to influence TTP outcome in mice. Interestingly, when amplified plasmin activity was allowed (α2-antiplasmin-/- mice with inhibited PAI-1) in mice with an acquired ADAMTS-13 deficiency, a resolution of TTP signs was observed as a result of an increased proteolysis of VWF. In line with this, in patients with acute TTP, increased PAP-complex and PAI-1 levels were also observed. However, neither PAP-complex levels nor PAI-1 levels were related to TTP signs and outcome. Conclusions In conclusion, endogenous plasmin levels are increased during acute TTP, although limited via suppression through α2-antiplasmin and PAI-1. Only when amplified plasmin activity is allowed, plasmin can function as a back-up for ADAMTS-13 in mice and resolve TTP signs as a result of an increased proteolysis of VWF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app