Add like
Add dislike
Add to saved papers

Superior Potassium Ion Storage via Vertical MoS2 "Nano-Rose" with Expanded Interlayers on Graphene.

Small 2017 September 23
Potassium has its unique advantages over lithium or sodium as a charge carrier in rechargeable batteries. However, progresses in K-ion battery (KIB) chemistry have so far been hindered by lacking suitable electrode materials to host the relatively large K(+) ions compared to its Li(+) and Na(+) counterparts. Herein, molybdenum disulfide (MoS2 ) "roses" grown on reduced graphene oxide sheets (MoS2 @rGO) are synthesized via a two-step solvothermal route. The as-synthesized MoS2 @rGO composite, with expanded interlayer spacing of MoS2 , chemically bonded between MoS2 and rGO, and a unique nano-architecture, displays the one of the best electrochemical performances to date as an anode material for nonaqueous KIBs. More importantly, a combined K(+) storage mechanism of intercalation and conversion reaction is also revealed. The findings presented indicate the enormous potential of layered metal dichalcogenides as advanced electrode materials for high-performance KIBs and also provide new insights and understanding of K(+) storage mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app