Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Quantification of both the area-at-risk and acute myocardial infarct size in ST-segment elevation myocardial infarction using T1-mapping.

BACKGROUND: A comprehensive cardiovascular magnetic resonance (CMR) in reperfused ST-segment myocardial infarction (STEMI) patients can be challenging to perform and can be time-consuming. We aimed to investigate whether native T1-mapping can accurately delineate the edema-based area-at-risk (AAR) and post-contrast T1-mapping and synthetic late gadolinium (LGE) images can quantify MI size at 1.5 T. Conventional LGE imaging and T2-mapping could then be omitted, thereby shortening the scan duration.

METHODS: Twenty-eight STEMI patients underwent a CMR scan at 1.5 T, 3 ± 1 days following primary percutaneous coronary intervention. The AAR was quantified using both native T1 and T2-mapping. MI size was quantified using conventional LGE, post-contrast T1-mapping and synthetic magnitude-reconstructed inversion recovery (MagIR) LGE and synthetic phase-sensitive inversion recovery (PSIR) LGE, derived from the post-contrast T1 maps.

RESULTS: Native T1-mapping performed as well as T2-mapping in delineating the AAR (41.6 ± 11.9% of the left ventricle [% LV] versus 41.7 ± 12.2% LV, P = 0.72; R2 0.97; ICC 0.986 (0.969-0.993); bias -0.1 ± 4.2% LV). There were excellent correlation and inter-method agreement with no bias, between MI size by conventional LGE, synthetic MagIR LGE (bias 0.2 ± 2.2%LV, P = 0.35), synthetic PSIR LGE (bias 0.4 ± 2.2% LV, P = 0.060) and post-contrast T1-mapping (bias 0.3 ± 1.8% LV, P = 0.10). The mean scan duration was 58 ± 4 min. Not performing T2 mapping (6 ± 1 min) and conventional LGE (10 ± 1 min) would shorten the CMR study by 15-20 min.

CONCLUSIONS: T1-mapping can accurately quantify both the edema-based AAR (using native T1 maps) and acute MI size (using post-contrast T1 maps) in STEMI patients without major cardiovascular risk factors. This approach would shorten the duration of a comprehensive CMR study without significantly compromising on data acquisition and would obviate the need to perform T2 maps and LGE imaging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app