Add like
Add dislike
Add to saved papers

Bioresponsive interfaces composed of calmodulin and poly(ethylene glycol): Toggling the interfacial film thickness by protein-ligand binding.

Responsive interfaces are often realized by polymer films that change their structure and properties upon changing the pH-value, ionic strength or temperature. Here, we present a bioresponsive interfacial structure that is based on a protein, calmodulin (CaM), which undergoes a huge conformational change upon ligand binding. At first, we characterize the conformational functionality of a double Cys mutant of CaM by small-angle X-ray scattering (SAXS) and Fourier transform infrared (FTIR) spectroscopy. The CaM mutant is then used to cross-link poly(ethylene glycol) (PEG) chains, which are bound covalently to a supporting planar Si surface. These films are characterized by X-ray reflectometry (XR) in a humidity chamber providing full hydration. It is well known that Ca2+ -saturated holo-CaM binds trifluoperazine (TFP) and changes its conformation from an open, dumbbell-shaped to a closed, globular one in solution. At the interface, we observe an increase of the PEG-CaM film thickness, when TFP is binding and inducing the closed conformation, whereas the removal of Ca2+ -ions and a concomitant release of TFP is associated with a decrease of the film thickness. This toggling of the film thickness is largely reversible. In this way, a structural change of the interface is achieved via protein functionality which has the advantage of being selective for ligand molecules without changing the environmental conditions in a harsh way via physico-chemical parameters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app