Add like
Add dislike
Add to saved papers

HOTAIR role in melanoma progression and its identification in the blood of patients with advanced disease.

The molecular mechanisms responsible for the metastatic progression of melanoma have not been fully defined yet. We have recently shown that an important role in this process is certainly played by HOX genes, whose regulation is under control of particular non-coding RNAs, some of which are present within the HOX locus. HOTAIR is the most studied among them, whose aberrant expression is associated with the metastatic progression of many malignancies. The aim of this study was to verify the role played by HOTAIR in metastatic progression of melanoma and to evaluate the circulating levels of HOTAIR in the blood of patients with metastatic melanoma. A series of melanocytic lesions were selected to evaluate the potential changes in the expression of HOTAIR during the evolution of the disease through in situ and molecular approaches. None of the benign melanocytic lesions showed the presence of HOTAIR. The staining of HOTAIR resulted very weak in the primary pT1 lesions, while it was very strong in all pairs of primary tissues and corresponding metastases. Surprisingly, we found the presence of HOTAIR in some intratumoral lymphocytes, while this positivity decreased in lymphocyte component further away from the tumor. HOTAIR was also detected in the serum of selected metastatic patients. These data allowed us to speculate on the fundamental role played by HOTAIR in tumor evolution of melanoma. Its presence in intratumoral lymphocytes might suggest that its involvement in the modulation of tumor microenvironment and the detection in the serum could be used in the management of melanoma patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app