Read by QxMD icon Read

Journal of Cellular Physiology

Wichida Chaweewannakorn, Wataru Ariyoshi, Toshinori Okinaga, Yuko Fujita, Kenshi Maki, Tatsuji Nishihara
Ameloblastin (Ambn) is an extracellular matrix protein and member of the family of enamel-related gene products. Like amelogenin, Ambn is mainly associated with tooth development, especially biomineralization of enamel. Previous studies have shown reductions in the skeletal dimensions of Ambn-deficient mice, suggesting that the protein also has effects on the differentiation of osteoblasts and/or osteoclasts. However, the specific pathways used by Ambn to influence osteoclast differentiation have yet to be identified...
August 13, 2018: Journal of Cellular Physiology
Binyan Lin, Kai Zhao, Dawei Yang, Dongsheng Bai, Yan Liao, Yuxin Zhou, Zhou Yu, Xiaoxuan Yu, Qinglong Guo, Na Lu
Decreasing bone marrow (BM) microvessel density and circulating angiogenic cytokine levels are promising strategies for the treatment of relapsed and resistant acute myeloid leukemia (AML). Previous studies have reported that wogonoside could inhibit the progression of AML and suppress angiogenesis in a solid tumor, but the correlation of these two effects was ignored. In this research, we determined whether wogonoside could inhibit angiogenesis in this hematologic malignancy. We found that wogonoside could inhibit tumor growth and progression, and prolong the survival of nude mice inoculated with U937/MDR...
August 13, 2018: Journal of Cellular Physiology
Hojjat Naderi-Meshkin, Naghmeh Ahmadiankia
One of the major obstacles in achieving a successful stem cell therapy is insufficient homing of transplanted cells. To overcome this obstacle, understanding the underlying mechanisms of stem cell homing is of obvious importance. Central to this review is the concept that cancer metastasis can be viewed as a role model to build up a comprehensive concept of stem cell homing. In this novel perspective, the prosurvival choices of the cancerous cells in the bloodstream, their arrest, extravasation, and proliferation at the secondary site can be exploited in favor of targeted stem cell homing...
August 13, 2018: Journal of Cellular Physiology
Jing-Yi Zhu, Sen Lin, Jian Ye
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators established as a nexus in numerous signaling pathways, notably in Hippo signaling. Previous research revealed multifarious function of YAP and TAZ in oncology and cardiovasology. Recently, the focus has been laid on their pivotal role in eye morphogenesis and homeostasis. In this review, we synthesize advances of YAP and TAZ function during eye development in different model organisms, introduce their function in different ocular tissues and eye diseases, and highlight the potential for therapeutic interventions...
August 10, 2018: Journal of Cellular Physiology
Jie Luo, Yue Gu, Pengfei Liu, Xiaomin Jiang, Wande Yu, Peng Ye, Yuelin Chao, Hongfeng Yang, Linlin Zhu, Ling Zhou, Shaoliang Chen
Excessive proliferation, migration, and antiapoptosis of pulmonary artery (PA) smooth muscle cells (PASMCs) underlies the development of pulmonary vascular remodeling. The innervation of the PA is predominantly sympathetic, and increased levels of circulating catecholamines have been detected in pulmonary arterial hypertension (PAH), suggesting that neurotransmitters released by sympathetic overactivation may play an essential role in PAH. However, the responsible mechanism remains unclear. Here, to investigate the effects of norepinephrine (NE) on PASMCs and the related mechanism, we used 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, the proliferating cell nuclear antigen and the cell counting kit-8 assay to evaluate the proliferation of PASMCs, Boyden chamber migration, and wound-healing assays to assess migration and western blot analysis to investigate protein expression...
August 5, 2018: Journal of Cellular Physiology
Rossella Titone, Meifang Zhu, Danielle M Robertson
The insulin-like growth factor type 1 receptor (IGF-1R) is part of the receptor tyrosine kinase superfamily. The activation of IGF-1R regulates several key signaling pathways responsible for maintaining cellular homeostasis, including survival, growth, and proliferation. In addition to mediating signal transduction at the plasma membrane, in serum-based models, IGF-1R undergoes SUMOylation by SUMO 1 and translocates to the nucleus in response to IGF-1. In corneal epithelial cells grown in serum-free culture, however, IGF-1R has been shown to accumulate in the nucleus independent of IGF-1...
August 5, 2018: Journal of Cellular Physiology
Roghayyeh Vakili-Ghartavol, Reza Mombeiny, Arash Salmaninejad, Seyed Mahdi Rezayat Sorkhabadi, Reza Faridi-Majidi, Mahmoud Reza Jaafari, Hamed Mirzaei
Tumor-associated macrophages (TAMs) are an important component of the leukocytic infiltrate of the tumor microenvironment. There is persuasive preclinical and clinical evidence that TAMs induce cancer inanition and malignant progression of primary tumors toward a metastatic state through a highly conserved and fundamental process known as epithelial-mesenchymal transition (EMT). Tumor cells undergoing EMT are distinguished by increased motility and invasiveness, which enable them to spread to distant sites and form metastases...
August 5, 2018: Journal of Cellular Physiology
Wenhua Zhao, Gengyang Shen, Hui Ren, De Liang, Xiang Yu, Zhida Zhang, Jinjing Huang, Ting Qiu, Jingjing Tang, Qi Shang, Peiyuan Yu, Zixian Wu, Xiaobing Jiang
MicroRNAs (miRNAs) are novel regulatory factors that play important roles in numerous cellular processes through the posttranscriptional regulation of gene expression. Recently, deregulation of the miRNA-mediated mechanism has emerged as an important pathological factor in osteoporosis. However, a detailed molecular mechanism between miRNAs and osteoporosis is still not available. In this review, the roles of miRNAs in the regulation of cells related to bone homeostasis as well as miRNAs that deregulate in human or animal are discussed...
August 5, 2018: Journal of Cellular Physiology
Xiaoping Song, Min Gong, Yanping Chen, Hui Liu, Jun Zhang
Diabetic nephropathy (DN) is one of the most serious and dangerous chronic complications caused by diabetes mellitus, and the identification and development of novel biomarkers could be beneficial for the diagnosis and prognosis of DN patients. This study focused on researching the differently expressed pattern of the DN samples from glomeruli and tubulointerstitium. Significance analysis of microarrays (SAM) was used to identify differentially regulated genes in 44 microdissected human kidney samples. Functional enrichment analysis was used to analyze the functions these genes are mostly enriched in...
August 5, 2018: Journal of Cellular Physiology
Priyanka Banerjee, Ankita Malik, Sudha Saryu Malhotra, Satish Kumar Gupta
During pregnancy, regulated generation of reactive oxygen species (ROS) is important for activation of signaling pathways and placentation. In the current study, the effect of H2 O2 on invasion of HTR-8/SVneo cells, a human extravillous trophoblast cell line, is investigated. Treatment of HTR-8/SVneo cells for 24 hr with H 2 O2 (25 µM) leads to a significant increase in invasion without affecting cell proliferation, viability, and apoptosis. Concomitantly, a significant increase in the matrix metalloproteinase-9 (MMP-9)/tissue inhibitor of metalloproteinases-1 (TIMP-1) ratio is observed...
August 5, 2018: Journal of Cellular Physiology
Xinyuan Zhao, Minlu Liang, Xiaona Li, Xiaoling Qiu, Li Cui
Adipose stem cells (ASCs) are considered a great alternative source of mesenchymal stem cells (MSCs) and have shown great promise on tissue engineering and regenerative medicine applications, including bone repair. However, the underlying mechanisms regulating the osteogenic differentiation of ASCs remain poorly known. Gene expression profiles of GSE63754 and GSE37329 were downloaded from gene expression omnibus database. R software and Bioconductor packages were used to compare and identify the differentially expressed genes (DEGs) before and after ASC osteogenic differentiation...
August 5, 2018: Journal of Cellular Physiology
Peng Ye, Yue Gu, Yan-Rong Zhu, Yue-Lin Chao, Xiang-Quan Kong, Jie Luo, Xiao-Min Ren, Guang-Feng Zuo, Dai-Min Zhang, Shao-Liang Chen
BACKGROUND: Previous studies have suggested that exogenous hydrogen sulfide can alleviate the development of diabetic cardiomyopathy (DCM) by inhibiting oxidative stress, inflammation, and apoptosis. However, the underlying mechanism is not fully understood. Nuclear expression and function of the transcription factor Forkhead box protein O (FoxO1) have been associated with cardiovascular diseases, and thus, the importance of FoxO1 in DCM has gained increasing attention. This study was designed to investigate the interactions between hydrogen sulfide (H2 S) and nuclear FoxO1 in DCM...
August 5, 2018: Journal of Cellular Physiology
Yan Chen, Rui Liu, Zhexuan Chu, Bu Le, Hong Zeng, Xiao Zhang, Qi Wu, Guoqing Zhu, Yuxin Chen, Ya Liu, Fenyong Sun, Zhicheng Lu, Yongxia Qiao, Jiayi Wang
Although it is generally accepted that diabetes is one of the most important risk factors for liver cancer, the underlying mechanism is still not well understood. The purpose of the current study is to further investigate how high concentrations of glucose (HG), a major symptom of diabetes, stimulate the development of liver malignancy. Using data mining, gap junction protein gamma 1 (GJC1) was identified as a critical proto-oncoprotein that is essential for the HG stimulation of proliferative capacity in liver cancer cells...
August 5, 2018: Journal of Cellular Physiology
Chunling Li, Feiyang Diao, Danhong Qiu, Manxi Jiang, Xiaoyan Li, Longsen Han, Ling Li, Xiaojing Hou, Juan Ge, Xianghong Ou, Jiayin Liu, Qiang Wang
SET-domain-containing 2 (SETD2), a member of the histone lysine methyltransferase family, has been reported to be involved in multiple biological processes. However, the function of SETD2 during oocyte maturation has not been addressed. In this study, we find that mouse oocytes are incapable of progressing through meiosis completely once SETD2 is specifically depleted. These oocytes present an abnormal spindle morphology and deficient chromosome movement, with disrupted kinetochore-microtubule attachments, consequently producing aneuploidy eggs...
August 5, 2018: Journal of Cellular Physiology
Hongfeng Yang, Linlin Zhu, Yuelin Chao, Yue Gu, Xiangquan Kong, Mingxing Chen, Peng Ye, Jie Luo, Shaoliang Chen
The endothelium glycocalyx layer (ECL), presents on the apical surface of endothelial cells, creates a barrier between circulating blood and the vessel wall. Low shear stress (LSS) may accelerate the degradation of the glycocalyx via hyaluronidase2 (Hyal2) and then alter the cell polarity. Yet the liver kinase B1 (LKB1) signaling pathway plays an important role in regulating cell polarity. However, the relationship between LKB1 and glycocalyx during LSS is not clear. In the current study, we demonstrate that LSS attenuates LKB1 and AMP-activated protein kinase activation as well as activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (p47phox ) and Hyal2 in the human umbilical vein endothelial cell (HUVEC)...
August 5, 2018: Journal of Cellular Physiology
Wenqiang Wei, Shaoping Ji
Cellular senescence is the arrest of normal cell division. Oncogenic genes and oxidative stress, which cause genomic DNA damage and generation of reactive oxygen species, lead to cellular senescence. The senescence-associated secretory phenotype is a distinct feature of senescence. Senescence is normally involved in the embryonic development. Senescent cells can communicate with immune cells to invoke an immune response. Senescence emerges during the aging process in several tissues and organs. In fact, increasing evidence shows that cellular senescence is implicated in aging-related diseases, such as nonalcoholic fatty liver disease, obesity and diabetes, pulmonary hypertension, and tumorigenesis...
August 5, 2018: Journal of Cellular Physiology
Tan Zhang, Kangxian Zhao, Weiqi Han, Wanlei Yang, Xuanyuan Lu, Qian Liu, Xiucheng Li, Yu Qian
Excessive bone resorption by osteoclasts (OCs) plays an important role in lytic bone diseases, such as osteoporosis. Although the pharmacological treatment of osteoporosis has been extensively developed, alternative treatments are still needed. Deguelin, a rotenoid isolated from several plant species, is a strong antitumor agent; however, its effect on OCs remains unclear. To the best of our knowledge, this is the first study to report that deguelin inhibits the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis, messenger RNA expression of osteoclastic-specific genes, and osteoclastic bone resorption, in primary bone marrow-derived macrophages...
August 5, 2018: Journal of Cellular Physiology
Golamreza Jadideslam, Khalil Ansarin, Ebrahim Sakhinia, Shahriar Alipour, Farhad Pouremamali, Alireza Khabbazi
MicroRNAs (miRNAs) are uniquely regulated in healthy, inflamed, activated, cancerous, or other cells and tissues of a pathological state. Many studies confirm that immune dysregulation and autoimmune diseases with inflammation are correlated with various miRNA expression changes in targeted tissues and cells in innate or adaptive immunity. In this review, we will explain the history and classification of epigenetic changes. Next, we will describe the role of miRNAs changes, especially mir-326 in autoimmunity, autoinflammatory, and other pathological conditions...
August 5, 2018: Journal of Cellular Physiology
Armita M Gorabi, Saeideh Hajighasemi, Hossein A Tafti, Amir Atashi, Masoud Soleimani, Nasser Aghdami, Ali K Saeid, Vahid Khori, Yunes Panahi, Amirhossein Sahebkar
BACKGROUND: The discovery of gene- and cell-based strategies has opened a new area to investigate novel approaches for the treatment of many conditions caused by cardiac cell failure. The TBX18 (T-box 18) transcription factor is considered as a prominent factor in the sinoatrial node (SAN) formation during the embryonic development. In this in vitro study, the effect of TBX18 gene expression on human-induced pluripotent-stem-cell-derived cardiomyocytes (hiPS-CMs) to induce pacemaker-like cells was examined...
August 5, 2018: Journal of Cellular Physiology
Natália Barreto Dos Santos, Amanda Pires Bonfanti, Thomaz Augusto Alves da Rocha-E-Silva, Pedro Ismael da Silva, Maria Alice da Cruz-Höfling, Liana Verinaud, Catarina Rapôso
The mechanisms of cancer involve changes in multiple biological pathways. Multitarget molecules, which are components of animal venoms, are therefore a potential strategy for treating tumors. The objective of this study was to screen the effects of Phoneutria nigriventer spider venom (PnV) on tumor cell lines. Cultured human glioma (NG97), glioblastoma (U-251) and cervix adenocarcinoma (HeLa) cells, and nontumor mouse fibroblasts (L929) were treated with low (14 µg/ml) and high (280 µg/ml) concentrations of PnV, and analyzed through assays for cell viability (thiazolyl blue tetrazolium blue), proliferation (carboxyfluorescein succinimidyl ester), death (annexin V/propidium iodide [Pi]), the cell cycle (Pi), and migration (wound healing and transwell assay)...
August 5, 2018: Journal of Cellular Physiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"