Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Expression, Purification, and Enzymatic Characterization of Intramembrane Proteases.

Intramembrane proteases catalyze peptide bond hydrolysis in the lipid bilayer and play a key role in numerous cellular processes. These integral membrane enzymes consist of four classes: site-2 protease (S2P), rhomboid serine protease, Rce1-type glutamyl protease, and aspartyl protease exemplified by presenilin and signal peptide peptidase (SPP). Structural elucidation of these enzymes is important for mechanistic understanding of their functions, particularly their roles in cell signaling and debilitating diseases such as Parkinson's disease and Alzheimer's disease. In the past decade, rigorous effort has led to determination of the crystal structures of S2P from archaebacterium, rhomboid serine protease from E. coli (GlpG), and presenilin/SPP from archaebacterium (PSH). A novel method has been developed to express well-behaved human γ-secretase, which facilitated its structure determination by cryoelectron microscopy (cryo-EM). In this chapter, we will discuss the expression and purification of intramembrane proteases including human γ-secretase and describe the enzymatic activity assays for these intramembrane proteases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app