Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

High-Acquisition-Rate Single-Shot Pump-Probe Measurements Using Time-Stretching Method.

Scientific Reports 2016 November 24
Recent advances of ultrafast spectroscopy allow the capture of an entire ultrafast signal waveform in a single probe shot, which greatly reduces the measurement time and opens the door for the spectroscopy of unrepeatable phenomena. However, most single-shot detection schemes rely on two-dimensional detectors, which limit the repetition rate of the measurement and can hinder real-time visualization and manipulation of signal waveforms. Here, we demonstrate a new method to circumvent these difficulties and to greatly simplify the detection setup by using a long, single-mode optical fiber and a fast photodiode. Initially, a probe pulse is linearly chirped (the optical frequency varies linearly across the pulse in time), and the temporal profile of an ultrafast signal is then encoded in the probe spectrum. The probe pulse and encoded temporal dynamics are further chirped to nanosecond time scales using the dispersion in the optical fiber, thus, slowing down the ultrafast signal to time scales easily recorded with fast detectors and high-bandwidth electronics. We apply this method to three distinct ultrafast experiments: investigating the power dependence of the Kerr signal in LiNbO3 , observing an irreversible transmission change of a phase change material, and capturing terahertz waveforms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app