Add like
Add dislike
Add to saved papers

Sex-related differences in matrix remodeling and early osteogenic markers in aortic valvular interstitial cells.

Heart and Vessels 2017 Februrary
Calcific aortic valve disease (CAVD) is a major cardiovascular disorder in the developed countries. Male is a known risk factor in this disease; unfortunately, how sex contributes to CAVD is mostly unknown. The objective of this study is to determine whether valvular interstitial cells (VICs) isolated from male versus female aortic valves demonstrate difference in osteogenic differentiation and/or extracellular matrix (ECM) remodeling. VICs were isolated from male and female rat or porcine aortic valves and cultured in osteogenic media for 10, 15 and 20 days. The proliferation among male and female VICs was assessed by a cell growth assay. The matrix remodeling of the VIC samples was quantified using glycosaminoglycan (GAG), collagen type I and gelatin zymography assays. Early osteogenic marker expression was assessed using alkaline phosphatase (ALP) staining and enzyme activity assay and Alizarin Red S staining. Our result showed that proliferation of VICs was significantly greater in female than male after 12 days of culture in regular media. Additionally, male VICs showed elevated amounts of normalized GAG, collagen I, and activated matrix metallopreoteniase-2 expression compared to female. Similarly, ALP content was greater in male VICs than female at all time points. In addition, male VICs formed calcific nodules with greater size, % area and integrated density than females. The results from this research suggest that there is a sex-related difference in the events associated with osteogenic differentiation of the aortic VICs, where male VICs are more prone to calcification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app