Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Relationship between the Carotid Plaque T1 Relaxation Time and the Plaque-to-Muscle Signal Intensity Ratio on Black-Blood Magnetic Resonance Imaging Scans.

BACKGROUND: Black-blood magnetic resonance imaging (BB-MRI) is useful for the characterization and assessment of carotid artery plaques. The plaque-to-muscle signal intensity (SI) ratio (plaque/muscle ratio [PMR]) is used widely to evaluate plaques. However, the correlation between the PMR and the T1 relaxation time needs to be determined. We measured the T1 relaxation time of carotid plaques using T1 mapping and compared the results with the PMR on BB-MRI scans.

METHODS: Between April 2014 and July 2015, 20 patients with carotid artery stenosis were treated by carotid artery stenting. All patients underwent preoperative magnetic resonance plaque imaging. The ratio of the plaque SI to the sternocleidomastoid muscle was calculated on T1-weighted BB-MRI scans. T1 mapping was performed in the region where the vessel was narrowest using the inversion recovery technique. The T1 relaxation time was recorded to determine whether there was a correlation with the PMR.

RESULTS: The plaque T1 value was 577.3 ± 143.2 milliseconds; the PMR value obtained on BB-MRI scans was 1.23 ± .27. There was a statistically significant decrease in the T1 value as the PMR increased (P < .0001).

CONCLUSIONS: As the T1 relaxation time was well correlated with the PMR on BB-MRI scans, the evaluation of vulnerable plaques using the PMR was reliable and convenient.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app