Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Predicting the transition from normal aging to Alzheimer's disease: A statistical mechanistic evaluation of FDG-PET data.

NeuroImage 2016 November 2
The assessment of the degree of order of brain metabolism by means of a statistical mechanistic approach applied to FDG-PET, allowed us to characterize healthy subjects as well as patients with mild cognitive impairment and Alzheimer's Disease (AD). The intensity signals from 24 volumes of interest were submitted to principal component analysis (PCA) giving rise to a major first principal component whose eigenvalue was a reliable cumulative index of order. This index linearly decreased from 77 to 44% going from normal aging to AD patients with intermediate conditions between these values (r=0.96, p<0.001). Bootstrap analysis confirmed the statistical significance of the results. The progressive detachment of different brain regions from the first component was assessed, allowing for a purely data driven reconstruction of already known maximally affected areas. We demonstrated for the first time the reliability of a single global index of order in discriminating groups of cognitively impaired patients with different clinical outcome. The second relevant finding was the identification of clusters of regions relevant to AD pathology progressively separating from the first principal component through different stages of cognitive impairment, including patients cognitively impaired but not converted to AD. This paved the way to the quantitative assessment of the functional networking status in individual patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app