Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

The biological response of cells to nanosecond pulsed electric fields is dependent on plasma membrane cholesterol.

Previous work from our laboratory demonstrated nanopore formation in cell membranes following exposure to nanosecond pulsed electric fields (nsPEF). We observed differences in sensitivity to nsPEF in both acute membrane injury and 24h lethality across multiple cells lines. Based on these data, we hypothesize that the biological response of cells to nsPEF is dependent on the physical properties of the plasma membrane (PM), including regional cholesterol content. Results presented in this paper show that depletion of membrane cholesterol disrupts the PM and increases the permeability of cells to small molecules, including propidium iodide and calcium occurring after fewer nsPEF. Additionally, cholesterol depletion concurrently decreases the "dose" of nsPEF required to induce lethality. In summary, the results of the current study suggest that the PM cholesterol composition is an important determinant in the cellular response to nsPEF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app