Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Gold nanostars: Benzyldimethylammonium chloride-assisted synthesis, plasmon tuning, SERS and catalytic activity.

Fabrication of Au nanostars (AuNSs) can expand the application range of Au nanoparticles because of their high electron density and localized surface plasmon resonance (LSPR) on branches. Exploiting this potential requires further refinement of length of the branches and radius of their tips. To this end, we successfully synthesized AuNSs with uniform and sharply-pointed branches by combining benzyldimethylammonium chloride (BDAC) and cetyltrimethylammonium bromide (CTAB) at low BDAC/CTAB ratios. Once mixed with CTAB, BDAC lowers the critical micelle concentration (CMC) for quick formation of the micelles, which provides favorable growth templates for AuNSs formation. Besides, BDAC increases the concentration of Cl(-), which favors Ag(+) in adsorbing on Au facets. This feature is crucial for the yield boosting and synergic shape control of AuNSs regardless of types of Au seeds used. Use of less amounts of seeds as the center of nucleation benefited sharper and longer growth of the branches. AuNSs exhibited excellent enhancement of surface-enhanced Raman scattering (SERS) intensities as the result of high electron density localized at the tips; however, the enhancement degree varied in accordance with the size of branches. In addition, AuNSs showed high catalytic performance toward the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Efficient catalysis over AuNSs originates from their corners, stepped surfaces and high electron density at the tips.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app