Add like
Add dislike
Add to saved papers

Copper(II) nanodots stabilized on Cassia fistula galactomannan: preparation and catalytic application towards fast solvent-free Biginelli reactions.

New Cu(II) nanodots have been developed using biopolymeric polysaccharide galactomannan. The nanocatalyst Cu(II)NDs@CFG has been developed through a one-step clean and sustainable reaction of Cassia fistula galactomannan and CuSO4 ·5H2 O in an aqueous medium. The catalyst Cu(II)NDs@CFG is well characterized by FT-IR, FE-SEM, EDS, ICP-MS, HR-TEM, XPS, XRD, TGA and BET analysis. This is the first example of preparing copper nanodots by using polysaccharide galactomannan as a supporting template to form copper nanodots in water. Moreover, the copper nanodots act as a potential nanocatalyst for multicomponent Biginelli reactions. A simple, one pot, efficient and environmentally benign synthesis of 3,4-dihydropyrimidin-2(1 H )-ones/thiones has been achieved with wide variety of aldehydes, β-dicarbonyl compounds and urea or thiourea indicating the good tolerance of the catalyst towards various functionalities. The presented work has several merits in terms of economy which include easy operation, complete avoidance of toxic organic solvents and expensive catalysts, simple work-up, less reaction time, and excellent yields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app