Add like
Add dislike
Add to saved papers

Fully Human Anti-CD19 CAR T Cells Derived from Systemic Lupus Erythematosus Patients Exhibit Cytotoxicity with Reduced Inflammatory Cytokine Production.

KYV-101 is an autologous anti-CD19 chimeric antigen receptor (CAR)-T cell therapy under investigation for patients with B-cell driven autoimmune diseases. Hu19-CD828Z is a fully human anti-CD19 CAR designed and demonstrated to have a favorable clinical safety profile. Since anti-CD19 CAR T cells target and kill B cells in both circulation and tissues, the treatment with Hu19-CD828Z CAR T cells offers great potential in depleting autoreactive B cells. Demonstrate that Hu19-CD828Z CAR T cells manufactured from cryopreserved leukaphereses from patients with systemic lupus erythematosus (SLE) exhibit CAR-mediated and CD19-dependent cytokine release, proliferation and cytotoxicity when co-cultured with autologous primary B cells. T cells were enriched from cryopreserved leukaphereses from SLE patients or healthy donors (HD). CAR T cells were generated by transducing these cells with a lentiviral vector encoding Hu19-CD828Z. CAR-mediated and CD19-dependent activity was monitored in vitro in a set of cytotoxicity, cytokine release, and proliferation studies, in response to autologous primary CD19+ B cells, a CD19+ cell line (NALM-6), or a CD19- cell line (U937). Hu19-CD828Z CAR T cells produced from SLE patients or HD induced greater proliferation and dose-dependent cytotoxicity against both autologous primary B cells and the CD19+ NALM-6 cells than nontransduced control T cells or co-cultures with a CD19- cell line. Interestingly, there was lower inflammatory cytokine production from SLE patient-derived CAR T cells compared to HD donor-derived CAR T cells with either CD19+ cells or primary B cells. Hu19-CD828Z CAR T cells generated from SLE patient lymphocytes demonstrate CAR-mediated and CD19-dependent activity against autologous primary B cells with reduced inflammatory cytokine production supporting KYV-101 as a novel potential therapy for the depletion of pathogenic B cells in SLE patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app