Add like
Add dislike
Add to saved papers

Correcting Hardening Artifacts of Aero-Engine Blades with an Iterative Linear Fitting Technique Framework.

Sensors 2024 March 22
Aero engines are the key power source for aerospace vehicles. Cermet turbine blades are the guarantee for the new-generation fighters to improve aero-engine overall performance. X-ray non-destructive reconstruction can obtain the internal structure and morphology of cermet turbine blades. However, the beam hardening effect causes artifacts in objects and affects the reconstruction quality, which is an issue that needs to be solved urgently. This study proposes a hardening-correction framework for industrial computed tomography (ICT) images based on iterative linear fitting. First, an iterative binarization was performed to improve the penetration length accuracy of the forward projection. Then, the proposed linear fitting technology combined with the Hermite function model is derived and analyzed to obtain suitable parameters of blade data. Finally, the fitting curves of the blade data, using the proposed method and the traditional polynomial fitting method, were analyzed and compared and were used to correct the engine turbine blade projection data to reconstruct different groups of tomographic images. Different groups of tomographic images were analyzed using three quantitative image quality evaluation indicators. The results show that the root-mean-square error (RMSE) of the tomographic image obtained by the proposed framework is 0.0133, which is lower than that of the compared method. The peak signal-to-noise ratio (PSNR) is 37.7050 dB and the feature structural similarity (FSIM) is 0.9881, which are both higher than that of the compared method. The proposed method improves the hardening-artifact-correction capability and can obtain higher-quality images, which provides new ideas for the development of imaging and detection of new-generation aero-engine turbine blades.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app