Add like
Add dislike
Add to saved papers

Sandstone chemical consolidation and wettability improvement using furan polymer-based nanofluid.

Scientific Reports 2024 March 5
The oil and gas industry faces a challenge in meeting global energy demand due to sand production in unconsolidated or semi-consolidated reservoirs, leading to equipment wear, production instability, and significant financial burdens. Mechanical and chemical sand control methods are being used among which chemical sand consolidation techniques have emerged as a promising solution. In this research, furan polymer-based nanofluid is investigated as a chemical consolidant to explore its intriguing properties and characteristics and how the quantity of nanoparticles influences the fundamental properties of curing resin and wettability while pioneering a groundbreaking approach to enhancing regaining permeability. According to the findings, a substantial boost in core compressive strength has been achieved as well as an impressive increase in re-permeability, especially for the foam injection case, by the meticulous optimization of nanofluid composition. The results include a remarkable regain permeability of 91.37%, a robust compressive strength of 1812.05 psi, and a noteworthy 15.32-degree shift towards water-wet wettability. Furthermore, silica nanoparticles were incorporated to enhance the thermal stability of the fluid, rendering it more adaptable to higher temperatures. Therefore, Furan polymer-based nanofluid is not only expected to present a solution to the challenge of sand production in the oil and gas industry but also to provide operational sustainability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app