Add like
Add dislike
Add to saved papers

Optimal Global Longitudinal Strain Thresholds for Pediatric Heart Surgery: Insights from a University Hospital.

Pediatric Cardiology 2024 Februrary 30
Congenital heart diseases impact millions annually, with pediatric care lacking suitable risk assessment tools. This research seeks to illuminate the association between the global longitudinal strain (GLS) and the subsequent impact on postoperative outcomes, contributing to a deeper understanding of its predictive value in the pediatric population affected by congenital heart diseases. An observational, analytic, longitudinal, and prospective study was conducted from May 2022 to May 2023, including all patients under 18 undergoing heart surgery with cardiopulmonary bypass (CBP). Patients not classifiable within the Risk Adjustment for Congenital Heart Surgery were excluded. Using transesophageal echocardiography, GLS was measured pre- and post-CPB. Receiver operating characteristic curve analysis determined GLS cut-off points for 30-day mortality risk, using Youden's method for optimal sensitivity and specificity. Bivariate and multivariate analysis identified the relationships between clinical variables. Eighty-nine patients undergoing congenital heart surgery were included. Fifteen deaths occurred. The area under the curve (AUC) for each GLS classification (pre, post, index) demonstrated effective discriminatory capacity (> 0.70) in predicting 30-day mortality. Pre-CBP GLS showed the strongest predictive power (AUC 0.833, IQR: 0.731 - 0.936) with a cut-off point of 12. Values lower than the cut-off point of pre-CPB GLS correlated with increased vasoactive-inotropic Scores and longer mechanical ventilation. GLS measurement is a reproducible method for assessing ventricular function in pediatric heart surgery, showing potential as a prognostic tool. This study marks the initial effort to establish cut-off points for preoperative GLS, postoperative GLS, and the strain index.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app