Add like
Add dislike
Add to saved papers

Inhibitory effects of nobiletin-mediated interfacial instability of bile salt emulsified oil droplets on lipid digestion.

Food Chemistry 2024 Februrary 18
Previous lipase inhibitors studies mainly focus on the binding between inhibitors and lipase, ignoring the impact of inhibitors on the oil-water interface of lipid droplets. This study aimed to investigate the effect of nobiletin (NBT) from Citri Reticulatae Pericarpium on the oil-water interface properties and lipid digestion. Here, we found that NBT could destroy bile salt (BS)-stabilized lipid droplets and thus inhibited free fatty acid release, owing to the interaction between NBT and BS at the oil-water interface, and reducing the stability of the oil-water interface (the stability index decreased from 91.15 ± 2.6 % to 66.5 ± 3.6 %). Further, the molecular dynamics simulation and isothermal titration calorimetry revealed that NBT could combine with BS at oil-water interface through intermolecular interactions, including hydrogen bonds, Van der Waals force, and steric hindrance. These results suggest that the interfacial instability of NBT mediated BS emulsified oil droplets may be another pathway to inhibit lipid digestion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app