Add like
Add dislike
Add to saved papers

Identification of congenital valvular murmurs in young patients using deep learning-based attention transformers and phonocardiograms.

One in every four newborns suffers from congenital heart disease (CHD) that causes defects in the heart structure. The current gold-standard assessment technique, echocardiography, causes delays in the diagnosis owing to the need for experts who vary markedly in their ability to detect and interpret pathological patterns. Moreover, echo is still causing cost difficulties for low-and middle-income countries. Here, we developed a deep learning based attention transformer model to automate the detection of heart murmurs caused by CHD at an early stage of life using cost-effective and widely available phonocardiography (PCG). PCG recordings were obtained from 942 young patients at four major auscultation locations, including the aortic valve (AV), mitral valve (MV), pulmonary valve (PV), and tricuspid valve (TV), and they were annotated by experts as absent, present, or unknown murmurs. A transformation to wavelet features was performed to reduce the dimensionality before the deep learning stage for inferring the medical condition. The performance was validated through 10-fold cross-validation and yielded an average accuracy and sensitivity of 90.23% and 72.41%, respectively. The accuracy of discriminating between murmurs' absence and presence reached 76.10% when evaluated on unseen data. The model had accuracies of 70%, 88%, and 86% in predicting murmur presence in infants, children, and adolescents, respectively. The interpretation of the model revealed proper discrimination between the learned attributes, and AV channel was found important (score > 0.75) for the murmur absence predictions while MV and TV were more important for murmur presence predictions. The findings potentiate deep learning as a powerful front-line tool for inferring CHD status in PCG recordings leveraging early detection of heart anomalies in young people. It is suggested as a tool that can be used independently from high-cost machinery or expert assessment. With additional validation on external datasets, more insights on the generalizability of deep learning tools could be obtained before being implemented in real-world clinical settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app