Add like
Add dislike
Add to saved papers

Sustained release polymer and surfactant based solid dispersion of andrographolide exhibited improved solubility, dissolution, pharmacokinetics, and pharmacological activity.

Andrographolide (AD) is a potent natural product with a wide range of pharmacological activities. However, it has low oral bioavailability due to poor solubility and dissolution rate. Solid dispersion (SD) is a promising technique to improve the solubility and dissolution rate of such molecules. In this study, SD formulation of AD was prepared using Kollidon-SR (KSR) and Poloxamer-407 (P-407) as carriers. SD was prepared using the solvent evaporation method and evaluated for the modulation of solubility of AD. The developed SD formulation was characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). Further, dissolution rate, yield, drug content, stability, flowability, and pharmacokinetic profile of SD were evaluated. The compatibility of SD with the Caco-2 cells and its impact on the P-glycoprotein (P-gp) mediated efflux was also investigated. Furthermore, carrageenan-induced paw edema, and adjuvant-induced arthritic model were used to evaluate the efficacy of SD. The results showed that SD3 (AD+KSR+P-407, 1:6:8) exhibited the highest solubility and dissolution rate, and significantly improved pharmacokinetic profile compared to native AD. SD3 was found to be stable during storage and displayed excellent yield, drug content, and flowability. This formulation was found to be compatible with the Caco-2 cells and retarded the efflux of P-gp substrate. SD3 also demonstrated substantially better efficacy than native AD in terms of paw edema inhibition (carrageenan-induced paw edema, Wistar rats), and overall improvement of disease condition (in terms of paw edema, arthritic score, AST, ALT, cytokines, radiological changes, and histopathology) in arthritic Wistar rats. In conclusion, SD3 exhibited improved solubility, dissolution rate, pharmacokinetic profile, and pharmacological activity than native AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app