Add like
Add dislike
Add to saved papers

Switchable Metal-Ion Selectivity in Sulfur-Functionalised Pillar[5]arenes and Their Host-Guest Complexes.

Nucleophilic substitution of pertosylated pillar[5]arene (P-OTs) with commercially available sulfur containing nucleophiles (KSCN, KSAc, and thiophenol), yields a series of sulfur-functionalised pillar[5]arenes. DLS results and SEM images imply that these pillararene macrocycles self-assemble in acetonitrile solution, while X-ray crystallographic evidence suggests solvent-dependent assembly in the solid state. The nature of the sulfur substituents decorating the rim of the pillararene controls binding affinities towards organic guest encapsulations within the cavity and dictates metal-ion binding properties through the formation of favorable S-M2+ coordination bonds outside the cavity, as determined by 1H NMR and fluorescence spectroscopic experiments. Addition of a dinitrile guest containing a bis-triazole benzene spacer (btn) induced formation of pseudorotaxane host-guest complexes. Fluorescence emission signals from these discrete macrocycles were significantly attenuated in the presence of either Hg2+ or Cu2+ in solution. Analogous titrations utilizing the corresponding pseudorotaxanes alter the binding selectivity and improve fluorescence sensing sensitivity. In addition, preliminary liquid-liquid extraction studies indicate that the macrocycles facilitate the transfer of Cu2+ from the aqueous to the organic phase in comparison to extraction without pillar[5]arene ligands.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app