Add like
Add dislike
Add to saved papers

Expanding Bioactive Fragment Space with the Generated Database GDB-13s.

Identifying innovative fragments for drug design can help medicinal chemistry address new targets and overcome the limitations of the classical molecular series. By deconstructing molecules into ring fragments (RFs, consisting of ring atoms plus ring-adjacent atoms) and acyclic fragments (AFs, consisting of only acyclic atoms), we find that public databases of molecules (i.e., ZINC and PubChem) and natural products (i.e., COCONUT) contain mostly RFs and AFs of up to 13 atoms. We also find that many RFs and AFs are enriched in bioactive vs inactive compounds from ChEMBL. We then analyze the generated database GDB-13s, which enumerates 99 million possible molecules of up to 13 atoms, for RFs and AFs resembling ChEMBL bioactive RFs and AFs. This analysis reveals a large number of novel RFs and AFs that are structurally simple, have favorable synthetic accessibility scores, and represent opportunities for synthetic chemistry to contribute to drug innovation in the context of fragment-based drug discovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app