Add like
Add dislike
Add to saved papers

Chromosome-level genome assembly of the endangered plant Tetraena mongolica.

Tetraena mongolica is an endangered xerophytic shrub with high ecological value for the restoration of desert vegetation because of its high tolerance to drought and heat stress. Here, we generated a high-quality chromosome-level reference genome of T. mongolica by combining PacBio HiFi data and Hi-C sequencing technologies, which was approximately 1.12 Gb (contig N50 of 25.5 Mb) in size and contained 61,888 protein-coding genes; repetitive sequences comprised 44.8% of the genome. This genome of T. mongolica is the first published genome sequence of a member of the order Zygophyllales. Genome analysis showed that T. mongolica has undergone a recent whole genome duplication (WGD) event, and a recent burst of long terminal repeat (LTR) insertions afterward, which may be responsible for its genome size expansion and drought adaptation. We also conducted searches for gene homologs and identified terpene synthase (TPS) gene families and candidate genes involved in triacylglycerol biosynthesis. The T. mongolica genome sequence could aid future studies aimed at functional gene identification, germplasm resource management, molecular breeding efforts, as well as evolutionary studies of Fabids and angiosperm taxa.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app