Add like
Add dislike
Add to saved papers

Semiparametric regression modeling of the global percentile outcome.

When no single outcome is sufficient to capture the multidimensional impairments of a disease, investigators often rely on multiple outcomes for comprehensive assessment of global disease status. Methods for assessing covariate effects on global disease status include the composite outcome and global test procedures. One global test procedure is the O'Brien's rank-sum test, which combines information from multiple outcomes using a global rank-sum score. However, existing methods for the global rank-sum do not lend themselves to regression modeling. We consider sensible regression strategies for the global percentile outcome (GPO), under the transformed linear model and the monotonic index model. Posing minimal assumptions, we develop estimation and inference procedures that account for the special features of the GPO. Asymptotics are established using U-statistic and U-process techniques. We illustrate the practical utilities of the proposed methods via extensive simulations and application to a Parkinson's disease study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app