Add like
Add dislike
Add to saved papers

Maternal and Fetal Exposure to (-)-Δ 9 -tetrahydrocannabinol and Its Major Metabolites in Pregnant Mice Is Differentially Impacted by P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) .

(-)-Δ9 -tetrahydrocannabinol (THC) is the primary pharmacological active constituent of cannabis. 11-hydroxy-THC (11-OH-THC) and 11- nor -9-carboxy-THC (THC-COOH) are respectively the active and nonactive circulating metabolites of THC in humans. While previous animal studies reported that THC could be a substrate of mouse P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), we have shown, in vitro , that only THC-COOH is a weak substrate of human BCRP, but not of P-gp. To confirm these findings and to investigate the role of P-gp and/or Bcrp in the maternal-fetal disposition of THC and its metabolites, we administrated 3 mg/kg THC retro-orbitally to FVB wild-type (WT), P-gp- -/- , Bcrp -/- or P-gp-/- / Bcrp-/- pregnant mice on gestation-day 18 and estimated the area under the concentration-time curve (AUC) of the cannabinoids in the maternal plasma, maternal brain, placenta, and fetus, as well as the tissue/maternal plasma AUC geometric mean ratios (GMRs) using a pooled data bootstrap approach. We found that the dose-normalized maternal plasma AUCs of THC in P-gp-/- and P-gp-/- / Bcrp-/- mice, and the placenta-to-maternal plasma AUC GMR of THC in Bcrp-/- mice were 279%, 271%, and 167% of those in WT mice, respectively. Surprisingly, the tissue-to-maternal plasma AUC GMRs of THC and its major metabolites in the maternal brain, placenta, or fetus in P-gp- -/- , Bcrp -/- or P-gp-/- / Bcrp-/- mice were 28-78% of those in WT mice. This study revealed that P-gp and Bcrp do not play a role in limiting maternal brain and fetal exposure to THC and its major metabolites in pregnant mice. Significance Statement This study systematically investigated whether P-gp and/or Bcrp in pregnant mice can alter the disposition of THC, 11-OH-THC, and THC-COOH. Surprisingly, except for Bcrp, which limits placental (but not fetal) exposure to THC, we found that P-gp-/- , Bcrp-/- , and/or P-gp-/- / Bcrp-/- significantly decreased exposure to THC and/or its metabolites in maternal brain, placenta, or fetus. The mechanistic basis for this decrease is unclear and needs further investigation. If replicated in humans, P-gp or BCRP based drug-cannabinoid interactions are not of concern.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app