Add like
Add dislike
Add to saved papers

Evaluation of an automated intracranial aneurysm detection and rupture analysis approach using cascade detection and classification networks.

Intracranial aneurysm is commonly found in human brains especially for the elderly, and its rupture accounts for a high rate of subarachnoid hemorrhages. However, it is time-consuming and requires special expertise to pinpoint small aneurysms from computed tomography angiography (CTA) images. Deep learning-based detection has helped improve much efficiency but false-positives still render difficulty to be ruled out. To study the feasibility of deep learning algorithms for aneurysm analysis in clinical applications, this paper proposes a pipeline for aneurysm detection, segmentation, and rupture classification and validates its performance using CTA images of 1508 subjects. A cascade aneurysm detection model is employed by first using a fine-tuned feature pyramid network (FPN) for candidate detection and then applying a dual-channel ResNet aneurysm classifier to further reduce false positives. Detected aneurysms are then segmented by applying a traditional 3D V-Net to their image patches. Radiomics features of aneurysms are extracted after detection and segmentation. The machine-learning-based and deep learning-based rupture classification can be used to distinguish ruptured and un-ruptured ones. Experimental results show that the dual-channel ResNet aneurysm classifier utilizing image and vesselness information helps boost sensitivity of detection compared to single image channel input. Overall, the proposed pipeline can achieve a sensitivity of 90 % for 1 false positive per image, and 95 % for 2 false positives per image. For rupture classification the area under curve (AUC) of 0.906 can be achieved for the testing dataset. The results suggest feasibility of the pipeline for potential clinical use to assist radiologists in aneurysm detection and classification of ruptured and un-ruptured aneurysms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app