Add like
Add dislike
Add to saved papers

Cobalt Metaphosphates as Economic Bifunctional Electrocatalysts for Hybrid Sodium-Air Batteries.

Inorganic Chemistry 2021 July 31
Bifunctional electrocatalysts are pre-eminent to achieve high capacity, cycling stability, and high Coulombic efficiency for rechargeable hybrid sodium-air batteries. The current work introduces metaphosphate (Na)KCo(PO3 )3 nanostructures as noble metal-free bifunctional electrocatalysts suitable for the rechargeable aqueous sodium-air battery. Prepared by the scalable solution combustion method, the metaphosphate class of (Na)KCo(PO3 )3 with spherical morphology exhibited robust oxygen reduction as well as evolution activity similar to the state-of-the-art catalysts. NaCo(PO3 )3 metaphosphate, when employed as an air cathode in hybrid sodium-air batteries, delivered reasonably low overpotential along with excellent cycling stability with a round-trip energy efficiency of 78%. Cobalt metaphosphates thus form a new class of economical bifunctional catalysts to develop hybrid sodium-air batteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app