Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

TMED2 Potentiates Cellular IFN Responses to DNA Viruses by Reinforcing MITA Dimerization and Facilitating Its Trafficking.

Cell Reports 2018 December 12
Mediator of IRF3 activation (MITA), also known as stimulator of interferon genes (STING), plays a vital role in the innate immune responses to cytosolic dsDNA. The trafficking of MITA from the ER to perinuclear vesicles is necessary for its activation of the downstream molecules, which lead to the production of interferons and pro-inflammatory cytokines. However, the exact mechanism of MITA activation remains elusive. Here, we report that transmembrane emp24 protein transport domain containing 2 (TMED2) potentiates DNA virus-induced MITA signaling. The suppression or deletion of TMED2 markedly impairs the production of type I IFNs upon HSV-1 infection. TMED2-deficient cells harbor greater HSV-1 load than the control cells. Mechanistically, TMED2 associates with MITA only upon viral stimulation, and this process potentiates MITA activation by reinforcing its dimerization and facilitating its trafficking. These findings suggest an essential role of TMED2 in cellular IFN responses to DNA viruses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app