Add like
Add dislike
Add to saved papers

Dispersive liquid-liquid microextraction and gas chromatography accurate mass spectrometry for extraction and non-targeted profiling of volatile and semi-volatile compounds in grape marc distillates.

The suitability of dispersive liquid-liquid microextraction (DLLME) and gas chromatography accurate mass spectrometry (GC-MS), based on a time-of-flight (TOF) MS analyzer and using electron ionization (EI), for the characterization of volatile and semi-volatile profiles of grape marc distillates (grappa) are evaluated. DLLME conditions are optimized with a selection of compounds, from different chemical families, present in the distillate spirit. Under final working conditions, 2.5 mL of sample and 0.5 mL of organic solvents are consumed in the sample preparation process. The absolute extraction efficiencies ranged from 30 to 100%, depending on the compound. For the same sample volume, DLLME provided higher responses than solid-phase microextraction (SPME) for most of the model compounds. The GC-EI-TOF-MS records of grappa samples were processed using a data mining non-targeted search algorithm. In this way, chromatographic peaks and accurate EI-MS spectra of sample components were linked. The identities of more than 140 of these components are proposed from comparison of their accurate spectra with those in a low resolution EI-MS database, accurate masses of most intense fragment ions of known structure, and available chromatographic retention index. The use of chromatographic and spectral data, associated to the set of components mined from different grappa samples, for multivariate analysis purposes is also illustrated in the study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app